
NETPORT Modules

Conitec NETPORT modules are intelligent matchbox-sized I/O modules with Ethernet and USB interface. They
can be used for PC port extensions, as well as for distributed I/O applications on the network - such as
acquiring data, monitoring processes, or operating relays, solenoids, motors or lamps. All NETPORT modules
have stand alone capability - they can store and run scripts for control jobs. This way, I/O control or data
aquisition tasks can be performed without the need of a PC.

Control through web interface

No additional software is required to set up a NETPORT module connected through the local network - any
browser will do. Every NETPORT module contains a HTTP server. When the module is connected to the LAN
or to a USB-Port, it can be configured through a web interface, just like a router. On the web interface, all I/O
ports can be either controlled, or simple control scripts in C can be loaded up. The scripts are then executed on
the module in an endless loop. The interface design can be adapted to customer requirements.

Control by command line

Scripts commands can be sent to a NETPORT module with a simple command line interface, and are then
automatically executed on the module.

Control by software

For complex control tasks, a driver DLL is available for implementing a NETPORT module in own software.
Application development toolkits, such as Gamestudio, can directly control NETPORT modules through socket
commands.

NETPORT Installation

Every NETPORT module contains a HTTP server. When connected to the LAN or to a USB-Port, it can be
configured through a web interface, just like a router. You can access the module's web interface by entering
its IP addresse in a web browser. When connected with a LAN, NETPORT modules don't require any driver
installation.

Power supply

Power up NETPORT by connecting it to a 12 Volts power adapter, either with the power connector (see
above, connector included) or at the DSUB connector. A few seconds later a red LED will blink, indicating
the start of the embedded LINUX boot process. After a while a red LED will light steadily. When the boot
process is complete, the green LED lights up and a short sound signal can be heard. NETPORT is now
ready to run. If a script was stored in Flash memory, it is started now.

Connecting NETPORT to the LAN

After connecting NETPORT with an Ethernet cable to a network and booting up, it can be configured through
the web interface on IP address http://192.168.1.12 resp. http://192.168.1.11, or alternatively controlled by
remote DLL. The IP address can be changed later through the web interface.

Connecting NETPORT to a PC Ethernet port (without network)

Connect NETPORT with an Ethernet crossover cable to the PC's Ethernet port. As your PC is not connected
to a normal network now, you need to set up its IP address manually. For this, open TCP/IPv4 Properties of
the network connection and set up a fixed IP address (f.i. 192.168.1.1.). Set the Gateway address at
192.168.1.2. After booting up NETPORT, you can now configure it through the web interface on IP address
http://192.168.1.12 resp. http://192.168.1.11, or control it by remote DLL.

Connecting NETPORT to a PC USB port

Connect NETPORT to the PC through an USB cable (if it isn't already). When it is connected via USB the
first time, the Windows Hardware Assistant will automatically open for installing the hardware driver. The
Windows Hardware Assistant dialogue will vary slightly depending on your Windows version. When asked if
you wish to automatically search online for the newest driver version, click [No]. In the next dialogues, select
the option to install the driver from a specified folder on your PC. In the folder select dialogue, navigate to
the drivers folder of your NETPORT software. Conclude this step by clicking [Ok]. Proceed then by clicking
all the following [Continue] buttons until the driver installation is complete.
After a successful installation, you'll find an entry for NETPORT in the Windows Network Environment. You
can now use any web browser with the IP address 192.168.167.12 to open the NETPORT web Interface.

http://192.168.1.12
http://192.168.1.11
http://192.168.1.12
http://192.168.1.11

The USB IP address can be changed later through the web interface.

Specifications NETPORT-48OCA

Mini USB 2.0 and Ethernet 10/100 connector
Size ca. 64 x 42 x 18 mm
DSUB-15 Connector for inputs and outputs
4 open collector outputs, max. 100 mA
2 analog inputs, 10 bits, reference voltage 1.1 / 3.3V
6 universal I/O-lines, configurable for analog/digital I/O
PWM signal generator for motors or servos, jitter < 50 us
Piezo transducer, software control for volume and frequency
Internal ARM9 RISC Processor with Linux kernel
C script language for I/O tasks, directly running on the module
Kit contains: module, power connector, software

Electrical Data

Parameter Min Typ Max Unit

Supply voltage 8 12 28 V (DC)

Power consumption 1 W

USB current 20 µ A

IOX 100 mA

IIX 5 20 mA

fPiezo 800 4000 Hz

SoftPWM Frequency 100 10000 Hz

SoftPWM Jitter 50 µ s

Operating temperature 0 60 °C

Storage temperature -25 75 °C

Type of protection IP20

Interfaces

Connector Factory set up Services

Ethernet 10/100MBPs, Auto Negotiation
00:11:ef:e0:xx:xx bis
00:11:ef:e7:xx:xx

192.168.1.11 FTP, Telnet,
Http, MADBridge

USB Mini Fullspeed (12 MBits/s),
Ethernet Emulation,
Powered by Device

192.168.167.12 FTP, Telnet,
Http, MADBridge

Power 3,81 mm, 2 pin, polarity protected 8..28V

Power supply can be applied through the power connector as well as through pin 8 (VCC) and pin 4 (GND) of
the 15-pin DSUB connector.

Inputs / Outputs

Pin Signal Remark

1 AGND Analog Ground

2 GPIO11 / OC3 Open Collector Output

3 GPIO10 / OC2 Open Collector Output

4 GND Power GND

5 GPIO9 / OC1 Open Collector Output

6 GPIO8 / OC0 Open Collector Output

7 GPIO0 / AD0 Analog Input

8 VCC Power VCC

9 GPIO1 / ADIO1 GPIO / Analog Input

10 GPIO2 / ADIO2 GPIO / Analog Input

11 GPIO3 / ADIO3 GPIO / Analog Input

12 GPIO4 / ADIO4 GPIO / Analog Input

13 GPIO5 / ADIO5 GPIO / Analog Input

14 GPIO6 / ADIO6 GPIO / Analog Input

15 GPIO7 / AD7 Analog Input

Circuit diagram open collector output

Circuit diagram analog input GPIO0, GPIO7 with Filter

Circuit diagram input/output GPIO1...GPIO6

 !! Inputs and outputs are not explicitly protected against electrostatic discharges. When handling the module,
please follow the same rules as when dealing with sensitive electronic components.

 !! Analog ground and digital ground are internally connected with low resistance. It is recommended that the
external circuit keeps the two grounds separate.

 !! For a measurement of analog voltages on GPIO1 ... GPIO6 external aliasing filters should be used. For
GPIO0 and GPIO7 an aliasing filter is already integrated.

Pin Functions

Every I/O Pin can be configured through web interface, script, or remote control. The configuration cosists of:

Pin name
Direction (input or output)
Additional functions (A/D converter, PWM)

The pin name is for documentation only. An I/O pin can have the following functions:

Analog input with 3.3V reference voltage (AIN33)
Analog input with 1.1V reference voltage (AIN11)
Digital input with 3.3V logic level (DI33)
Digital output with 3.3V logic level (DO33)
Digital open collector output (DOOC)
Inverting digital input with 3.3V logic level (IDI33)
Inverting Digital output with 3.3V logic level (IDO33)
Software implemented pulse width modulation (SPWM)
Inverting pulse width modulation (ISPWM)

Not all pins support all functions. The supported pin functions are listed in the following table:

Specifications NETPORT-84OCO

Mini USB 2.0 and Ethernet 10/100 connector
Size ca. 64 x 42 x 18 mm
DSUB-15 Connector for inputs and outputs
8 open collector outputs, max. 100 mA
4 opto inputs, 20 mA
PWM signal generator for motors or servos
Piezo transducer, software control for volume and frequency
Internal ARM9 RISC Processor with Linux kernel
C script language for I/O tasks, directly running on the module
Kit contains: module, power connector, software

Electrical Data

Parameter Min Typ Max Unit

Supply voltage 8 12 28 V (DC)

Power consumption 1 W

USB current 20 µ A

IOX 100 mA

IIX 5 20 mA

fPiezo 800 4000 Hz

Operating temperature 0 60 °C

Storage temperature -25 75 °C

Type of protection IP20

Interfaces

Connector Factory set up Services

Ethernet 10/100MBPs, Auto Negotiation
00:11:ef:e0:xx:xx bis
00:11:ef:e7:xx:xx

192.168.1.12 FTP, Telnet,
Http, MADBridge

USB Mini Fullspeed (12 MBits/s),
Ethernet Emulation,
Powered by Device

192.168.167.12 FTP, Telnet,
Http, MADBridge

Power 3,81 mm, 2 pin, polarity protected 8..28V

Power supply can be applied through the power connector as well as through pin 8 (VCC) and pin 4 (GND) of

the 15-pin DSUB connector.

Inputs / Outputs

Pin Signal Bemerkung

1 OGND Optocoupler GND

2 IN3 Optocoupler Input

3 IN2 Optocoupler Input

4 GND Power GND

5 IN1 Optocoupler Input

6 IN0 Optocoupler Input

7 O7 Open Collector Output

8 VCC Power VCC

9 O6 Open Collector Output

10 O5 Open Collector Output

11 O4 Open Collector Output

12 O3 Open Collector Output

13 O2 Open Collector Output

14 O1 Open Collector Output

15 O0 Open Collector Output

Demo Board

The PIO84 Demo Board allows easy experimenting with the module. It contains 8 LEDs for displaying the state
of the outputs, and 4 buttons for feeding the inputs. The board can be equipped with additional power switches
and a power supply.

NETPORT Web Interface

NETPORT can be configured through the web interface, similar to a router. You can open the web interface by
entering its IP address in your browser (usually http://192.168.1.12 or http://192.168.1.11, see Installation).

The interface contains the following sections:

Box Control

http://192.168.1.12
http://192.168.1.11

On this page the outputs can be set (84oco only) and the states of the inputs are displayed. Values are
updated by clicking on [Update]. Depending on Settings (see below) the signal directions are shown. The
manual control of the module is also possible if a script is running on the module or the module is otherwise
controlled remotely.

Script

On this page, simple C scripts can be entered and run on the module (see script samples). The scripts can
perform simple procedures or perform complex control tasks. They are entered in the text box, either directly or
via copy/paste from a script library. Scripts can be stored on the module so that they run automatically when it's
started the next time (see Settings). Syntax or runtime errors are also displayed on the Web interface. The
following buttons control script execution:

Start Starts script execution from the current position.

Stop Stops script execution.

Restart Starts the script on the first line.

Update Status Displays the current script state.

Store To Flash Stores the script in the flash memory of NETPORT. Stored scripts can be run
automatically after booting up, so that NETPORT works independently without
a PC connection.

Load From Flash Loads the script from the NETPORT flash memory and starts it.

Settings

On this page the module can be configured. Changed settings are only effective by clicking on [Apply
Settings]. The following parameters can be set up:

Script

Autostart Run the stored script automatically after booting.

When script fails Behavior in case of an error - reboot or warning.

When script terminates Reboot at the end of the script.

Services

Allow telnet Remote control via Telnet.

Allow remote access Remote control via NetBridge (GalepX).

Allow remote scripts Remote control via Socket resp. Remote.DLL.

Load custom pages Allow the upload of a customized web interface via FTP zulassen.

Show custom pages Start the customized web interface by default. The original NETPORT web
interface can be displayed anytime by entering a direct page URL (f.i.
http://192.168.167.12/nbHome.html)

Misc

Beep after booting Sound signal after booting.

Ethernet / USB

Use DHCP configuration Get the IP address from the DHCP server.

IP Address Ethernet IP address (default: 192.168.1.11). After changing the address
NETPORT must be rebooted.

Netmask Network mask.

Gateway Gateway address (default: 192.168.1.2)

USB IP Address USB IP-Adresse (default: 192.168.167.12). After changing the address,
NETPORT must be rebooted.

I/O

Names Assign names to the I/O pins.

Initial Direction Set up the I/O pin type (analog, digital, PWM) and the signal direction.

I/O CFG Assign names and initial states to the I/O pins.

A/D CFG Sets voltage gradients and offsets for the analog inputs.

PWM CFG Sets pulse times for the PWM outputs.

Apply Settings Applies the configuration.

Store Custom Website Stores the uploaded custom web interface in flash memory.

Download Configuration Stores the configuration in a file with extension “ .netbox”. This file contains all
settings such as IP address, I/O configuration and script, as well as the serial
number of the module.

Set Defaults Reset all settings to the default values.

Reboot Restart the NETPORT module.

Restore

In this section a stored configuration can be fully or partially uploaded.

http://192.168.167.12/nbHome.html

Restore Script Loads the script from the configuration file (.netbox).

Restore Settings Loads IP address, I/O configuration and all further settings.

Restore When Serial
Number Matches

Checks if the moduel serial number is identical to the serial number in the
configuration file. The configuration is only loaded when the number match,
otherwise an error message is displayed.

Reboot After Restoring Automatically restarts the module after loading the configuration file.

Custom

In this section a customer specific web interface is displayed. It can be uploaded by FTP to
ftp://netport_ip/custom-html (see additional documentation). As long as nothing was uploaded, an example
page is opened that displaye the states of the inputs and allows setting the outputs. This example page can be
used as a template for a customized web interface.

NETPORT Remote Control

A NETPORT module can be remote controlled by script files or software programs through a TCP socket. All
I/O functions are accessible through script commands. The script commands are executed by the script
interpreter on the module. Any output is sent back through the socket channel. The script syntax follows ANSI
C, with some differences. Pointers are not supported, but some C++ elements, such as exceptions, are
supported. You'll find details about the script language in the following chapters.

For sending script commands to the module, aside from using the web interface there are many other
possibilities:

Remote Control through a TCP socket

The module acts as a socket server at TCP Port 1233. Socket clients can connect to this port, send a script
and this way remote control the box. The same scripts are used as on the web interface - with two exceptions:

#include <netbox.h> is optional and can be omitted.
The script should not contain an endless loop, so the command can terminate and send back a response.

All scripts are executed in parallel. When multiple clients connect, multiple script commands are executed at
the same time. Every script can access all resources such as I/O lines.

 !! Remote control must be enabled under Settings [Allow remote script].

Remote Control by GalepX

The module can be remote controlled through a MAD Bridge f.i. with the GalepX device programmer software.
An example of such a control script can be found in the GalepX Distribution under
skripts/pio84oco/pio84oco.gxs. This script opens a window on the GalepX user interface, which displays the
input states of the module and allows to set the outputs with check boxes.

Remote Control by Gamestudio

The multimedia development system Gamestudio (www.3dgamestudio.de) can control NETPORT modules
with the lite-C commands socket_connect, socket_send, and socket_receive. Details can be found in the
Gamestudio manual.

Remote Control by Batch File

The program remote.exe is provided for sending commands to NETPORT modules through a batch file. F.i.
the command line remote -ip192.168.1.12 test.gxs test.log reads commands from the script file test.gxs,
sends them to the NETPORT at IP address 192.168.1.12, and stores the output in the test.log file. If the name
of the log file is omitted, the output is displayed in a window. This way remote command scripts can be easily
tested. The remote.exe program was written with Gamestudio and can be found in the remote subfolder.

Remote Control by DLL

The remote.dll library is an easy way to implement GALEP remote control in any user software. Its API
contains four simple commands:

int RemoteConnect(char* IP,long iPort)
Opens a TCP socket connection to the given IP address and port, and returns 0 when a socket host could not
be found.

void RemoteClose()
Closes the socket connection; must be called before terminating the program.

int RemoteSend(void *data,long size)
Sends the content of the *data buffer to the socket, with size in bytes.

int RemoteReceive(void *data,long size)
Checks if a data packet was received from the socket. In this case the *data buffer is filled and the number of
bytes is returned. Otherwise 0 is returned.

The remote.dll library can be found in the remote\API subfolder, together with a small test program
RemoteTest.cpp that demonstrates how to implement NETPORT remote control into own programs.

Remote Control by Linux

Under Linux, commands can be sent directly to GalepX through shell scripts. The script command connect
192.168.1.12 port 1233 opens the socket; the following commands are then sent directly to the socket.

Remote sessions

Remote sessions can run in two modes:

command mode - for sending a command or script to the module. The connection is closed after receipt of
a command
interactive mode - for this the command keep must be sent first. Afterwards any number of commands or
scripts can be sent. The connection is terminated by the client.

Two examples for a command mode session and an interactive session, under a Linux shell:

Command mode

connect localhost port 1233 (start connection - Linux only)

print("Hallo World");\n (send command)

 (wait for answer)

#10 Hello World \n (receive answer)

#00 \n

 (Module terminates connection)

Interactive

connect localhost port 1233 (start connection - Linux only)

keep \n (command to hold the connection)

print("Hello World");\n (send command)

 (wait for answer)

#10 Hello World \n (receive answer)

#00 \n

... (send more commands)

 (client terminates connection)

Script commands

There are two types of script commands: Syntax commands are always available. Remote commands
depend on the state of the software - for instance whether a document is opened and which properties it has. A
reference of syntax commands and remote commands can be found in the following sections of this help
document.

Script output is directly sent to the client as a character string. A prefix of every string allows to determine
whether it's an error, a normal output or the termination of a command. The following prefixes are defined:

#00 Termination of a command. Sent after any command.

#01 Error Error message follows.

#10 Output from the print() command.

The following conditions lead to error messages:

Problems establishing the network connection
Problems sending/receiving data
Script syntax errors
Script runtime errors

Connection errors and syntax errors lead to immediate termination of the connection (if there was any), and
have to be handled by the client.

Runtime errors can be caught with try { ... } catch() { ... } exception handling in the script. It makes sense to
insert a print command in the catch block so that the client can react on the error. At the moment, all runtime
errors cause an exception of type string. If an exception is not caught, the connection is terminated.

? latest version online

Variables and Arrays

Variables store numbers. For defining a variable, use a C style declaration, like this:

int name; // uninitialized variable

int name = 123; // initialized variable

This declaration creates a variable of type int with the given name. The name can contain up to 30 characters,
and must begin with A..Z, a..z, or an underscore _.

Variable types

Computers always perform their calculations with finite accuracy, so all normal variable types are limited in
precision and range:

Type Size Range Precision

piInt64 8 bytes -9223372036854775808 to 9223372036854775807 1

piUInt64 8 bytes 0 to 18446744073709551616 1

int, piInt32 4 bytes -2147483648 to 2147483647 1

uint, piUInt32 4 bytes 0 to 4294967296 1

piInt8 1 byte -128 to 127 1

piUInt8 1 byte 0 to 256 1

double 8 bytes -1.8·10308 to 1.8·10308 > 2.2·10-308

Integer constants in the program - such as character constants ('A'), integer numeric constants (12345) or
hexadecimal constants (0xabcd) are treated as int. Constants containing a decimal point (123.456) are treated
as double.

Arrays

If you add a "[]" to the type, you can create a variable group, called an array:
int[] name; // array definition

The append function can add elements to the end of the array:
int[] my_array; // define a new array

my_array.append(1,2,3); // the array now contains 3 variables with the numbers 1,, 2, 3

my_array.append(4); // add a fourth variable

The elements of an array can be accessed with

array[n] // get or set the n-th element. n must be smaller than the number of elements in the array!

The number of elements in an array can be retrieved with

array.size();

Elements can be removed with

array.remove(1); // remove the first element

Elements can be inserted at a certain place with

array.insert(0, 10); // insert an element before the first element, and give it the value 10

Rather than using append, the initial size of an array can be set with

array.setSize(100); // generate 100 elements, and remove all prior elements

For testing if an array contains any elements, use

array.empty(); // true: array is empty / false: array contains elements

Finally, for removing all elements from an array, use

array.clear(); // remove all elements

See also:

Strings, structs, functions

? latest version online

Strings

Strings are a plain sequence of alphanumerical characters - letters, numbers or symbols - which are mostly
used for messages, or for identifiers of objects such as projects (documents), actions, buffers, programmers
(end devices), etc. They are defined this way:

string name = "characters";

Defines a string with the given name and initializes it to the content characters between double quotation
marks.

Remarks:

Special characters in the string can be given with a backslash: \n = Line feed, \" = double quote, \\ = back
slash.
Strings can be compared with the == operator, f.i. if (sDocument == "document0") ...
Strings can be concatenated with the +, += operators, f.i. string s = "Hello " + "World";
Strings can be repeated with the *, *= operators, f.i. string s = "Hello " * 2;
Arrays of strings can be defined just as arrays of variables.

Example:

string device_name = "device";

string empty_str = "";

string[] MyStringArray;

The string class has the following functions:

string.length(): int

returns the number of characters in the string.

string.toInt(): int

returns the integer number represented by the string.

string.toDouble(): double

returns the double floating point number represented by the string.

Strings can be formatted with the message function and the << pipe operator. The content between %..% is
replaced by the pipe in order of appearance, e.g:

message("Variable %p1% has the content %p2%") << "Test" << 12;

// results in the string "Variable Test has the content 12"

See also:

Variables, structs, functions, print, message

? latest version online

Structs

A struct is an assembled object that contains variables, functions, or further structs (similar to a C++ class).
Members of a struct are individually accessed using the struct name, followed by a '.' and the member name.
Example of a counter class:

struct tCounter

{

 void count()

 {

 ++miValue;

 }

 int miValue;

};

// We create an object...

tCounter cnt;

cnt.count();

See also:

Variables, strings, functions

? latest version online

Expressions

An expression is an arithmetical operation that delivers a result, which can then be assigned to a variable. The
arithmetic expression may be composed of any numbers, further variables, function calls, brackets, and
arithmetic operators.

The following operators are available in expressions:

= Assigns the result right of the '=' to the variable left of the '='.

+-*/ The usual mathematical operators. * and / have a higher priority than + and -.

% Modulo operator, the integer remainder of a division.

| Bitwise OR, can be used to set certains bits in a variable.

^ Bitwise exclusive OR, can be used to toggle certain bits in a variable.

~ Bitwise invert, toggles all bits of a variable.

& Bitwise AND, can be used to reset certains bits in a variable.

>> Bitwise right shift, can be used to divide a positive integer value by 2.

<< Bitwise left shift, can be used to multiply a positive integer value by 2.

() Brackets, for defining the priority of mathematical operations. Always use brackets when priority
matters!

Examples:

x = (a + 1) * b / c;

z = 10;

x = x >> 2; // divides x by 4

x = x << 3; // multiplies x by 8

x = fraction(x) << 10; // copies the fractional part of x (10 bits) into the integer part

Assignment operators

The "="-character can be combined with the basic operators:

+= Adds the result right of the operator to the variable left of the operator.

-= Subtracts the result right of the operator from the variable left of the operator.

*= Multiplies the variable left of the operator by the result right of the operator.

/= Divides the variable left of the operator by the result right of the operator.

%= Sets the variable left of the operator to the remainder of the division by the result right of the operator.

|= Bitwise OR's the the result right of the operator and the variable left of the operator.

&= Bitwise AND's the the result right of the operator and the variable left of the operator.

^= Bitwise excöusive OR's the the result right of the operator and the variable left of the operator.

>>= Bitwise right shift the variable left of the operator by the result right of the operator.

<<= Bitwise left shift the variable left of the operator by the result right of the operator.

Increment and decrement operators

By placing a '++' at the end of a variable, 1 is added; by placing a '--', 1 is subtracted. This is a convenient
shortcut for counting a variable up or down.

Examples:

x = x + 1; // add 1 to x

z += 1; // add 1 to x

x++; // add 1 to x (lite-C only)

See also:

Functions, Variables, Comparisons

? latest version online

Comparisons

A comparison is a special type of expression that delivers either true (nonzero) or false (zero) as a result.
There are special comparison operators for comparing variables or expressions:

== True if the expressions left and right of the operator are equal.

!= True if the expressions left and right of the operator are not equal.

> True if the expression left of the operator is greater than the expression right of the operator.

>= True if the expression left of the operator is greater than or equal to the expression right of the
operator.

< True if the expression right of the operator is greater than the expression left of the operator.

<= True if the expression right of the operator is greater than or equal to the expression left of the
operator.

&& True if the expressions left and right of the operator are both true.

|| True if either of the expressions left and right of the operator is true.

! True if the expression right of the operator is not true.

() Brackets, for defining the priority of comparisions. Always use brackets when priority matters!

Remarks:

 !! The "equals" comparison is done with '==', to differentiate it from the assignment instruction with '='.
Wrongly using '=' instead of "==" is not noticed by the compiler because it's a valid assignment, but is one of
the most frequent bugs in scripts.
 !! Only pointers and integer variables (int, long, char etc., and var without decimals) should be compared
with '==' or '!='.

Examples:

10 < x // true if x is greater than 10

(10 <= x) && (15 => x) // true if x is between 10 and 15

!((10 <= x) && (15 => x)) // true if x is less than 10 or greater than 15 (lite-C only)

See also:

Functions, Variables, Expressions

? latest version online

if (comparison) { instructions... }

else { instructions... }

If the comparison between the round brackets is true (i.e. evaluates to non-zero), all instructions between the
first pair of winged brackets are executed. It it's not true (i.e. evaluates to zero), the instructions between the
second pair of winged brackets following else will be executed. The else part with the second set of
instructions can be omitted. The winged brackets can be omitted when only one instruction is to be executed
dependent on the comparison.

Speed:

Fast

Example:

if (((x+3)<9) || (y==0)) // set z to 10 if x+3 is below 9, or if y is equal to 0

 z = 10;

else

 z = 5;// set z to 5 in all other cases

See also:

comparisons, while

while (comparison) { instructions... }

do { instructions... } while (comparison) ;

Repeats all instructions between the winged brackets as long as the comparison between the round brackets
is true resp. evaluates to non-zero. This repetition of instructions is called a loop. The while statement
evaluates the comparison at the begin, the do..while statement at the end of each repetition.

Remarks:

If you want the loop to run forever, simply use the value 1 for the comparison - 1 is always true.
Loops can be prematurely terminated by break, and prematurely repeated by continue.
The winged brackets can be omitted when the loop contains only one instruction.

Example:

int x = 0;

while(x < 100) // repeat while x is lower than 100

{

 x += 1;

}

See also:

if, goto, break, continue, comparisons

? latest version online

for (initialization; comparison; continuation) { instructions... }

Performs the initialization, then evaluates the comparison and repeats all instructions between the winged
brackets as long as the comparison is true resp. non-zero. The continuation statement will be executed after
the instructions and before the next repetition. This repetition of instructions is called a loop. Initialization and
continuation can be any expression or function call. A for loop is often used to increment a counter for a fixed
number of repetitions.

Remarks:

Loops can be prematurely terminated by break, and prematurely repeated by continue.
The winged brackets can be omitted when the loop contains only one instruction.

Example:

double x = 3;

for(int i=0; i<5; i++) // repeat 5 times

 x *= x; // calculate the 5th power of x

See also:

if, while, goto, break, continue, comparisons

switch (expression) { case value: instructions... default: instructions... }

The switch statement allows for branching on multiple values of a variable or expression. The expression is
evaluated and compared with the case values. If it matches any of the case values, the instructions following
the colon are executed. The execution continues until either the closing bracket or a break statement is
encountered. If the expression does not match any of the case statements, and if there is a default statement,
the instructions following default: are executed, otherwise the switch statement ends.

Example:

int choice;

...

switch (choice)

{

 case 0:

 print("Zero! ");

 break;

 case 1:

 print("One! ");

 break;

 case 2:

 print("Two! ");

 break;

 default:

 print("None of them! ");

}

See also:

if, while, goto, break, continue, comparisons ? latest version online

continue

Jumps to the begin of a while loop or the continuation part of a for loop.

Example:

int x = 0;

int y = 0;

while (x < 100)

{

 x+=1;

 if(x % 2) // only odd numbers

 {

 continue; // loop continuing from the start

 }

 y += x; // all odd numbers up to 100 will be sum

}

See also:

while, for, break

? latest version online

break

The break statement terminates a loop or a switch..case statement, and continues with the first instruction
after the closing bracket.

Example:

while (x < 100)

{

 x+=1;

 if (x == 50) { break; } // loop will be ended prematurely

}

See also:

while, for, switch, continue ? latest version online

message(string) : string

Returns a string with a placeholder replaced by a number.

Parameters:

string - string with a placeholder between % characters, f.i. "The value is: %value%".

Parameters:

string - formatted string.

Example:

print(message("The document ID is: \"%name%\".") << sDocument);

See also:

print, throw

print(string)

Prints a string through the socket channel.

Parameters:

string - string to print.

Example:

print("Test!");

See also:

message

pause(int ms)

Does nothing for the given number of millicesonds.

Parameters:

ms - milliseconds to wait.

Example:

pause(200);

See also:

message

throw object

Throws an exception with the given object. If the exception is not caught, the script is terminated and the object
is printed through the output channel.

try { } catch(object) { }

Catches exceptions with the given object type that occur between the try { ... } brackets. When ... is given for
the object type, all remaining exception types are caught.

Example:

try {

 if (i == 0)

 throw 1;

 if (i == 2)

 throw "Error";

}

catch(int a)

{

 print(message("Exception %x%!") << a);

}

catch(...)

{

 ...

}

See also:

message, print

io

Struct for setting outputs, reading inputs, and configuring I/O pins. Not all commands are available for all
NETPORT modules.

io.set(int pin_number, bool value)

Sets a digital output pin with the given pin_number (0..11), to the given value (true, false).

io.get(int pin_number): bool

Reads a digital input pin in from the given pin number (0..7).

io.setPWM(int pin_number, int off_time, int on_time)

Generates a PWM signal on the pin with the given pin_number (0..7). The on and off time is given in
microseconds. Set both to 0 for disabling the PWM generator.

io.value(int pin_number): int

Reads a universal pin (NETPORT-84oca only), with the given pin number (0..7). In case of a digital input, the
return value is 0 or 1; for an analog input it's 0..4095.

io.out.setMask(int mask)

Sets all output pins from a mask. Bit 0 of the mask corresponds to output O0, and so on.

io.in.getMask(): int

Reads all input pins. Bit 0 of the mask corresponds to input I0, and so on.

io.setFunction(int pin_number, int mode)

Sets the function of a universal I/O pin (NETPORT-84oca only), with the given pin number (0..7). The mode is
one of the following definitions:
enum GPIOConfig

{

 gpioAnalogInput3v3 = 32,

 gpioAnalogInput1v1 = 33,

 gpioDigitalInputLogic = 16,

 gpioInvertedDigitalInputLogic = 272,

 gpioDigitalOutputLogic = 64,

 gpioInvertedDigitalOutputLogic = 320,

 gpioInvertedDigitalOutputLogicSoftPWM = 832,

 gpioDigitalOutputLogicSoftPWM = 576,

 gpioDigitalOutputOC = 65,

 gpioInvertedDigitalOutputOC = 321,

 gpioDigitalOutputOCSoftPWM = 577,

 gpioInvertedDigitalOutputSoftPWM = 833

};

Example:

// running light script

#include <netbox.h>

void setMask(int iMask)

{

 io.set(1, bool(iMask & 1));

 io.set(2, bool(iMask & 2));

 io.set(3, bool(iMask & 4));

 io.set(4, bool(iMask & 8));

 io.set(5, bool(iMask & 16));

 io.set(6, bool(iMask & 32));

}

while (true)

{

 for (int i = 0; i < 5; ++i)

 {

 setMask(1 << i);

 pause(100);

 }

 for (int i = 0; i < 5; ++i)

 {

 setMask(1 << (5-i));

 pause(100);

 }

}

See also:

mcu

Timer

Timer class, for periodic functions or returning the current time.

timer.time(): int

Returns the number of ms since the creation of the timer.

timer. setUTCSecSinceEpoc(piInt64 n)

Sets the number of seconds elapsed since 1.1.1970. Required for the second, minute, hour, day, month, and
year functions.

timer.second(): int

Returns the current second (0..59).

timer.minute(): int

Returns the current minute (0..59).

timer.hour(): int

Returns the current hour (0..23).

timer.day(): int

Returns the current day of the month (1..31).

timer.month(): int

Returns the current month (1..12).

timer.year(): int

Returns the current year.

timer.setOnTimeOut(string name)

Returns the number of ms since the creation of the timer.

timer.start(int ms)

Returns the number of ms since the creation of the timer.

timer.stop()

Returns the number of ms since the creation of the timer.

Sets the second LED on or off.

Example:

// fading out acoustic signal

#include "netbox.h"

for (int i = 0; i < 100; ++i)

{

 mcu.piezo.beep(1000, 100-i);

 pause(1);

}

mcu.piezo.off();

// Wait forever...

while (true) pause();

See also:

mcu, pause

mcu

Struct for setting peripherals, such as LED and piezo speaker.

mcu.piezo.beep(int frequency, int volume)

Generates a sound signal with the given frequency (kHz) and volume (0..100).

mcu.piezo.off()

Switches off the piezo beeper.

mcu.led.setLED1(bool value)

Sets the first LED on or off.

mcu.led.setLED2(bool value)

Sets the second LED on or off.

Example:

// fading out acoustic signal

#include "netbox.h"

for (int i = 0; i < 100; ++i)

{

 mcu.piezo.beep(1000, 100-i);

 pause(1);

}

mcu.piezo.off();

// Wait forever...

while (true) pause();

See also:

mcu

Configuration functions

The following functions are available from MainApplication version 1.20 resp. firmware version 2.0.6 or above.
They can be used for exchanging data between the main script running on the box, and additional scripts sent
through a remote control channel.

getVariable(string name) : string

Returns the string representation of the content of the global variable with the given name. If the variable does
not exist, an empty string is returned.

setVariable(string name, string value)

Sets the global variable with the given name to the given value. If the variable does not exist, it is created.

getConfig(string name) : string

Returns the string representation of the content of the configuration variable with the given name. If the
variable does not exist, an empty string is returned.

setConfig(string name, string value)

Sets the configuration variable with the given name to the given value. If the variable does not exist, it is
created. It's not yet stored in Flash memory; for this the function storeConfig() must be called.

storeConfig()

Stores all configuration variables in Flash memory.

loadConfig()

Loads all configuration variables from Flash memory.

Example:

See also:

message, print

NETPORT Script Examples

The following example scripts can be directly copied and tested in the web interface:

Blinker

#include <netbox.h>

// blink output O0 (100 ms on, 200 ms off)

while(true)

{

 io.set(0,true);

 pause(100);

 io.set(0,false);

 pause(200);

}

Running light

#include <netbox.h>

int iDir = 1;

int iIdx = 0;

while (true)

{

 iIdx += iDir;

 if ((iIdx >= 7) ||(iIdx == 0))

 iDir *= -1;

 io.out.setMask(1 << iIdx);

 pause(100);

}

Copy input I0 to output O0

#include <netbox.h>

// All off.

io.out.setMask(0);

while (true)

{

 bool bo = io.get(0);

 io.set(0, bo);

}

Set output O0 to (I0 or I1)

#include <netbox.h>

// All off.

io.out.setMask(0);

enum Switches

{

 sw1 = (1 << 0),

 sw2 = (1 << 1),

};

while (true)

{

 bool bo = io.in.getMask() & (sw1 |sw2);

 io.set(0,bo);

}

Read an analog input (48oca only)

#include <netbox.h>

while (true)

{

 bool boState = io.value(2) > 800;

 io.set(1, boState); // set output when input voltage > 800 units

}

Generate PWM signals

#include <netbox.h>

// 1ms = 1000us

const int us = 1;

const int ms = 1000;

io.setPWM(0, 15*ms, 100*us);

io.setPWM(1, 15*ms, 200*us);

io.setPWM(2, 15*ms, 400*us);

io.setPWM(3, 15*ms, 1*ms);

io.setPWM(4, 15*ms, 2*ms);

io.setPWM(5, 15*ms, 3*ms);

io.setPWM(6, 15*ms, 4*ms);

io.setPWM(7, 15*ms, 5*ms);

// wait forever...

while (true) pause();

Configure inputs and outputs (48oca only)

#include <netbox.h>

io.setFunction(0, gpioAnalogInput3v3);

io.setFunction(1, gpioDigitalInputLogic);

io.setFunction(2, gpioDigitalOutputLogic);

io.setFunction(3, gpioDigitalInputLogic);

io.setFunction(4, gpioDigitalInputLogic);

io.setFunction(5, gpioDigitalInputLogic);

io.setFunction(6, gpioDigitalInputLogic);

io.setFunction(7, gpioAnalogInput3v3);

Generate a short sound (0.2 sec 1kHz)

#include <netbox.h>

mcu.piezo.beep(1000,100);

pause(200);

mcu.piezo.off();

// Wait forever...

while (true) pause();

Generate a fading sound

#include <netbox.h>

for (int i = 0; i < 100; ++i)

{

 mcu.piezo.beep(1000, 100-i);

 pause(1);

}

mcu.piezo.off();

// Wait forever...

while (true) pause();

Function to store current output states to flash

void storeOutputState()

{

 int iCurrentState = io.out.getMask();

 string s = message("%d%") << iCurrentState;

 setVariable("OutputState", s);

 storeConfig();

}

Function that returns the output states stored in flash

int storedOutputState()

{

 int iOldPrevious = 0;

 try {

 iOldPrevious = getVariable("OutputState").toInt();

 }

 catch(...)

 {

 // Variable was not defined or not a valid integer...

 }

 return iOldPrevious;

}

Functions to update the flash with the output state

// Call this function at the beginning of your script to restore output states.

void restoreOutputState()

{

 int iOld = storedOutputState();

 io.out.setMask(iOld);

}

// Call this function periodically or each time you change the output states.

// When output states has been changed we store this persistently.

void storeWhenChanged()

{

 int iCurrentState = io.out.getMask();

 int iOld = storedOutputState();

 if (iOld != iCurrentState)

 {

 print(message("Different output states: %old% / %current%! Will store values...") << iOld << iCurrentState);

 storeOutputState();

 }

}

	Introduction
	Installation
	48OCA Specifications
	84OCO Specifications
	Web Interface
	Remote Control
	Script Syntax
	Variables
	Strings
	Structs
	Expressions
	Comparisons
	if .. else
	while, do
	for
	switch .. case
	continue
	break
	message
	print
	pause
	throw

	io
	timer
	mcu
	config
	Script Examples

